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Introduction
 Graphs naturally occur in many applications
 Hidden space: graph-like structures 
 Simple, non-linear structure behind data

http://www2.iap.fr/users/sousbie/web/html/indexd41d.html



Overall Goal:
Using geometric and topological ideas to develop graph 

reconstruction algorithms for various settings with theoretical 
understanding / guarantees



Some Related Work
 Principal curve based approaches

 [Hastie, Stuetzle, 1989], [Kegl, Kryzak, 2002], [Ozertem,  Erdogmus, 
2011] … 



Some Related Work
 Principal curve based approaches

 [Hastie, Stuetzle, 1989], [Kegl, Kryzak, 2002], [Ozertem,  Erdogmus, 
2011] … 

 Reeb graph based
 [Natali et al., Graphical Models 2011], [Ge et al. W. , NIPS 2011], [Chazal 

et al, DCG 2015]… 

This talk:  an effective graph reconstruction 
algorithm to handle ambient noise



This Talk

 Geometric graph reconstruction via discrete Morse + persistence
 A motivating example from road-network reconstruction

 Algorithms and theoretical understanding 
 [Wang, Li, W., SIGSPATIAL 2015], [Dey, Wang, W., SIGSPATIAL 2017,  SoCG 2018]

Overall Goal:
Using geometric and topological ideas to develop graph 

reconstruction algorithms for various settings with theoretical 
understanding / guarantees



A Motivating Application
 Automatic road network reconstruction

Input:  GPS trajectories Goal:  Road network 



Motivation cont
 Reconstruction from satellite images



Input:  GPS trajectories Goal:  Road network 

A Motivating Application
 Automatic road network reconstruction
 Two main challenges:

 Noisy trajectories
 Non-homogeneous distribution 

 Previous methods:
 Local information for decision making, sensitive to noise
 Often thresholding involved, challenging in handling non-uniform input 
 Junction nodes identification and connectivity challenging



Morse-based Reconstruction

 Persistence-guided (discrete) Morse-based reconstruction 
framework for road network reconstruction 
 uses global structure behind data;  robust against noise, small 

gaps, and non-uniformity in data
 conceptually clean, easy to implement;  also extension to map 

integration / augmentation
 [Wang, Li, W., SIGSPATIAL 2015]

 [Gyulassy, PhD thesis 2008], [Robins et al. 2011], [Delgado-Friedrichs et al 2015], 
[Sousbie, 2015]

Input: 
Large collection 
of trajectories

Convert to a 
density field 
𝜌𝜌: 𝐼𝐼 → 𝑅𝑅

Discrete 
Morse based 

graph 
extraction

Persistence-
based 

simplification+



Main Idea
 Assume input is a scalar (density) field 
 𝑓𝑓: 𝐼𝐼 → 𝑅𝑅 , where high value of 𝑓𝑓 indicates high signal value

 View graph of 𝑓𝑓 as a terrain (mountain range) on 𝐼𝐼 × 𝑅𝑅
 𝐼𝐼 = 0,1 2 ⊂ 𝑅𝑅2 for the case of road network reconstruction

 Road ≈ mountain ridge 
 Captured by 1-stable manifold of 𝑓𝑓



Morse Theory: Smooth Case
 Let 𝑓𝑓:𝑅𝑅𝑑𝑑 → 𝑅𝑅 be a Morse function 

 Gradient of 𝑓𝑓 at 𝑥𝑥: 𝛻𝛻𝑓𝑓 𝑥𝑥 = − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕1

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕2

, … , 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑑𝑑

𝑇𝑇

 Critical points of 𝑓𝑓:  { 𝑥𝑥 ∈ 𝑅𝑅𝑑𝑑 ∣ 𝛻𝛻𝑓𝑓 𝑥𝑥 = 0 }
 An integral line 𝐿𝐿: 0, 1 → 𝑅𝑅𝑑𝑑:

 a maximal path in 𝑅𝑅𝑑𝑑 whose tangent vectors agree with gradient of 𝑓𝑓 at 
every point of the path

 origin/destination at critical points
 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐿𝐿 = lim

𝑝𝑝→1
𝐿𝐿(𝑝𝑝)

 𝑂𝑂𝑂𝑂𝑂𝑂 𝐿𝐿 = lim
𝑝𝑝→0

𝐿𝐿 𝑝𝑝

 1-stable manifolds
 Integral lines ending at (𝑑𝑑 − 1)-saddles 

𝑥𝑥



1-stable Manifold

1-stable manifold (of index 𝑑𝑑 − 1 saddle points) ≈ mountain ridges



Discrete Case
 Smooth case

 1-stable manifold from 
Morse theory

 Discrete case
 Piecewise-linear (PL) approximation? 



Discrete Morse Theory
 [Forman 1998, 2002]

 Combinatorial version of Morse theory
 Many results analogous to classical Morse theory
 Works for cell complexes

 Combinatorial, thus numerically stable
 Algorithmically often easy to handle, especially 

simplification



Discrete Gradient Vector Field
 Given a simplicial complex 𝐾𝐾, a discrete (gradient) vector

 (𝜎𝜎, 𝜏𝜏) s.t.𝜎𝜎 < 𝜏𝜏 (vertex-edge or edge-triangle pair in our case)

 A Morse pairing 𝑀𝑀 𝐾𝐾 of 𝐾𝐾
 A set of discrete vectors s.t. each simplex appears in at most one vector 

 A simplex 𝜎𝜎 is critical, if 
 it does not appear in any pair in 𝑀𝑀(𝐾𝐾)

 A V-path in 𝑀𝑀(𝐾𝐾)
 𝜏𝜏0,𝜎𝜎1, 𝜏𝜏1,𝜎𝜎2, 𝜏𝜏2, … , 𝜏𝜏𝑘𝑘 ,𝜎𝜎𝑘𝑘+1 s.t. 𝜎𝜎𝑖𝑖 , 𝜏𝜏𝑖𝑖 ∈ 𝑀𝑀(𝐾𝐾)
 cyclic:  if 𝑘𝑘 > 0, and 𝜎𝜎𝑘𝑘+1, 𝜏𝜏0 ∈ 𝑀𝑀(𝐾𝐾)
 acyclic (gradient path) otherwise
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 acyclic (gradient path) otherwise

 𝑀𝑀(𝐾𝐾): discrete gradient vector field
 if there is no cyclic V-path in 𝑀𝑀(𝐾𝐾)



Discrete Gradient Vector Field
 Discrete Morse function         discrete gradient vector field

 A discrete Gradient Vector field  ≈ gradient field for Morse functions
 critical k-simplex ≈ index-k critical point
 critical edge ≈ saddles for function on 𝑅𝑅2

 1-stable manifolds: edge-triangle V-paths 
 1-unstable manifolds: vertex-edge V-paths (``valley ridges’’) 



Simplification via Morse Cancellation
 Morse cancellation operation (to simplify the vector field): 
 A pair of critical simplices 〈𝜎𝜎, 𝜏𝜏〉 can be cancelled 

 if there is a unique gradient path between them 
 By reverting that gradient path

canceling 〈𝑣𝑣2, 𝐷𝐷2〉 〈𝐷𝐷, 𝐷𝐷〉 not cancellable



 Morse cancellation of critical pairs simplify the discrete 
gradient vector fields
 which further simplifies 1-(un)stable manifolds

 But which critical pairs should we cancel? 
 intuitively: should respect input function! Less important ones 

corresponding to noise

 Persistence homology induced by the density function to 
guide the cancellation of critical pairs
 ``persistence’’ capturing ``importance’’ of critical pairs
 [Edelsbrunner, Letscher, Zomorodian 2002], [Zomorodian, Carlsson 2005], …



Sublevel-set Persistence – Simplified view
 Input:  𝑓𝑓:𝑅𝑅 → 𝑅𝑅

𝑓𝑓

𝑎𝑎
𝑓𝑓−1 𝑎𝑎



Sublevel-set Persistence – Simplified view
 Input:  𝑓𝑓:𝑅𝑅 → 𝑅𝑅

𝑓𝑓

𝑎𝑎
𝐻𝐻∗(𝑓𝑓−1 𝑎𝑎 )



Sublevel-set Persistence – Simplified view
 Input:  𝑓𝑓:𝑅𝑅 → 𝑅𝑅

𝑓𝑓

𝑎𝑎1 𝑥𝑥1



Sublevel-set Persistence – Simplified view
 Input:  𝑓𝑓:𝑅𝑅 → 𝑅𝑅
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𝑎𝑎1+
𝑥𝑥1
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Sublevel-set Persistence – Simplified view
 Input:  𝑓𝑓:𝑅𝑅 → 𝑅𝑅

𝑓𝑓
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𝑥𝑥4
𝑥𝑥3

𝑥𝑥2

 Induced persistence pairings 
𝑃𝑃 𝑓𝑓
 𝑥𝑥3, 𝑥𝑥4 ,𝑝𝑝𝐷𝐷𝑂𝑂𝐷𝐷 = 𝑓𝑓 𝑥𝑥4 − 𝑓𝑓 𝑥𝑥3
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 𝑥𝑥2, 𝑥𝑥5

𝑥𝑥5
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Discrete Case
 A piecewise-linear (PL) function 𝜌𝜌: 𝐾𝐾 → 𝑅𝑅 defined on a 

simplicial complex domain 𝐾𝐾
 Persistence algorithm via lower-star filtration

 [Edelsbrunner, Letscher, Zomorodian 2002],

 A collection of persistence pairings: 
 𝑃𝑃𝜌𝜌 𝐾𝐾 = { 𝜎𝜎, 𝜏𝜏 }, where k = dim 𝜎𝜎 = dim 𝜏𝜏 − 1

 𝜎𝜎: creator, creating 𝑘𝑘-th homological features
 𝜏𝜏: destroyer, killing feature created at 𝜎𝜎
 𝑝𝑝𝐷𝐷𝑂𝑂 𝜎𝜎, 𝜏𝜏 = 𝜌𝜌 𝜏𝜏 − 𝜌𝜌(𝜎𝜎): life time of this feature

Intuitively, pairs of simplices with positive persistence 
corresponding to persistence pairing of critical points in 

the smooth case. 



Main Algorithm
 Input: 

 Triangulation 𝐾𝐾 of domain 𝐼𝐼 ⊂ 𝑅𝑅𝑑𝑑 , function 𝑓𝑓:𝐾𝐾 → 𝑅𝑅, threshold 𝛿𝛿

 Initialize discrete gradient vector field 𝑊𝑊 on 𝐾𝐾 to be the trivial one

 Step 1:   persistence computation
 Compute persistence pairings 𝑃𝑃(𝐾𝐾) induced by function −𝑓𝑓

 Step 2:   Morse simplification
 Simplify 𝑊𝑊 by performing Morse cancellation for all critical pairs from 
𝑃𝑃(𝐾𝐾) with persistence ≤ 𝛿𝛿, if possible

 Step 3:   collect output 
 For all remaining critical edges with persistence > 𝛿𝛿
 collect their 1-unstable manifolds and output The algorithm works for any 𝑑𝑑-dimensional domain 𝐼𝐼 ⊂ 𝑅𝑅𝑑𝑑

but only 2-skeleton of the triangulation 𝐾𝐾 is needed



Results – Road network reconstruction

BerlinBeijingAthens



Effect of Simplification

Berlin, 27189 trajectories



Thresholding? 

increasing threshold



Comparison



Map Integration

+



Map Augmentation



Reconstruction from Satellite Images
 CNN + reconstruction framework



Reconstruction from Satellite Images
 CNN + reconstruction framework



Results – Neuron Reconstruction
 Single neuron reconstruction 

DIADAM dataset OP 2 



Results – Neuron reconstruction 
 Mouse brain LM images from an AAV viral tracer-injection

 from Mitra laboratory at CSHL



Great! 

But what can we guarantee ? 



Next

 Further simplification of the algorithm/editing strategy
 Reconstruction guarantees under a (simple) noise model 

 [Dey, Wang, W,  ACM SIGSPATIAL 2017], [Dey, Wang, W.,  SoCG 2018]

Provide theoretical justification / understanding for the 
persistence-guided discrete Morse-based graph 

reconstruction framework 



Reconstruction Editing 
 Simple strategies to allow adding missing parts 
 Enforce minima (vertices):   allow adding missing free branches
 Enforce maxima (triangles):  allow adding missing loops  

adding missing branches adding missing loops



 Input: 
 Triangulation 𝐾𝐾 of domain 𝐼𝐼 ⊂ 𝑅𝑅𝑑𝑑 , function 𝑓𝑓:𝐾𝐾 → 𝑅𝑅, threshold 𝛿𝛿

 Initialize discrete gradient vector field 𝑊𝑊 on 𝐾𝐾

 Step 1:   persistence computation
 Compute persistence pairings 𝑃𝑃(𝐾𝐾) induced by function −𝑓𝑓

 Step 2:   Morse simplification
 Simplify 𝑊𝑊 by performing Morse cancellation for all critical pairs from 
𝑃𝑃(𝐾𝐾) with persistence ≤ 𝛿𝛿, if possible

 Step 3:   collect output 
 For all remaining critical edges with persistence > 𝛿𝛿
 collect their 1-unstable manifolds and output 

Main Algorithm



Simplified Algorithms
 Step 2 (Morse simplification) is replaced by

 No need to cancel edge-triangle critical pair
 No need to check whether cancellation is valid or not
 No explicit cancellation operation is needed ! 

 simply collect all ``negative’’ edges whose persistence is at most 𝛿𝛿

Simplified Step 2:  
Linear time to collect a set of edges, and they form a spanning forest 

that contain all necessary information of discrete gradient field



Simplified Algorithm – cont.
 Step 3 (collecting output) is replaced by: 

 No explicit discrete gradient vector field maintained!
 Simplified algorithm even easier and faster

 [Attali et al 2009], [Bauer et al 2012]

 Theorem 
Time complexity of the simplified algorithms is 𝑂𝑂 𝑛𝑛 + 𝑇𝑇𝑂𝑂𝑇𝑇𝐷𝐷 𝑃𝑃𝐷𝐷𝑂𝑂 where 
𝑛𝑛 is the total number of vertices and edges in 𝐾𝐾. 

This holds for any dimensions. 



Next

 Further simplification of the algorithm/editing strategy
 Reconstruction guarantees under a (simple) noise model 

 [Dey, Wang, W,  ACM SIGSPATIAL 2017], [Dey, Wang, W.,  2018]

Provide theoretical understanding / justification for the 
persistence-guided discrete Morse-based graph 

reconstruction framework 



Noise Model
 True graph 𝐺𝐺 ⊂ Ω ≔ 0, 1 𝑑𝑑

 𝐺𝐺𝜔𝜔 ⊂ Ω: an 𝜔𝜔-neighborhood of 𝐺𝐺
 such that for (i) any 𝑥𝑥 ∈ 𝐺𝐺𝜔𝜔, 𝑑𝑑 𝑥𝑥,𝐺𝐺 ≤ 𝜔𝜔; and (ii) 
𝐺𝐺𝜔𝜔 deformation retracts to 𝐺𝐺

 A function 𝜌𝜌:Ω → 𝑅𝑅 is (𝛽𝛽, 𝜇𝜇,𝜔𝜔)-approximation of 𝐺𝐺
 if there exists an 𝜔𝜔-neighborhood 𝐺𝐺𝜔𝜔of 𝐺𝐺 so that 

 𝜌𝜌 𝑥𝑥 ∈ [𝛽𝛽,𝛽𝛽 + 𝜇𝜇],  for any 𝑥𝑥 ∈ 𝐺𝐺𝜔𝜔

 𝜌𝜌 𝑥𝑥 ∈ 0, 𝜇𝜇 ,  otherwise
 𝛽𝛽 > 2𝜇𝜇



Noise Model
 True graph 𝐺𝐺 ⊂ Ω ≔ 0, 1 𝑑𝑑

 𝐺𝐺𝜔𝜔 ⊂ Ω: an 𝜔𝜔-neighborhood of 𝐺𝐺
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 𝜌𝜌 𝑥𝑥 ∈ 0, 𝜇𝜇 ,  otherwise
 𝛽𝛽 > 2𝜇𝜇

 In discrete case, 
 𝐾𝐾 a triangulation of Ω, 𝐺𝐺𝜔𝜔 ⊂ 𝐾𝐾, 𝜌𝜌 defined at vertices of 𝐾𝐾



Main Results

Theorem (Geometry)
For any dimension 𝑑𝑑, under our noise model and for 

appropriate 𝛿𝛿, the output graph �𝐺𝐺 satisfies �𝐺𝐺 ⊂ 𝐺𝐺𝜔𝜔. 

Theorem (Topology)
For any dimension 𝑑𝑑, under our noise model and for appropriate 

𝛿𝛿, the output graph �𝐺𝐺 is homotopy equivalent to 𝐺𝐺. 

Theorem (Topology in 2D)
For 𝑑𝑑 = 2, under our noise model and for appropriate 𝛿𝛿, there 

is a deformation retraction from 𝐺𝐺𝜔𝜔 to �𝐺𝐺. 





𝛿𝛿 = 0.0001 𝛿𝛿 = 5 𝛿𝛿 = 20



Proof Ideas
 Suppose true graph 𝐺𝐺 has 𝑔𝑔 independent loops
 Lemma A:
 Under the noise model, after 𝛿𝛿-simplification for appropriate 𝛿𝛿, 

exactly 1 critical vertex (global minimum), 𝑔𝑔 critical edges and 
𝑔𝑔 critical triangles are left. 



Proof Ideas
 Suppose the true graph 𝐺𝐺 has 𝑔𝑔 independent loops
 Lemma A:
 Under the noise model, after 𝛿𝛿-simplification for appropriate 𝛿𝛿, 

exactly 1 critical vertex (global minimum), 𝑔𝑔 critical edges and 
𝑔𝑔 critical triangles are left. 

 Lemma B:
 All critical edges are in the region 𝐺𝐺𝜔𝜔,
 and all critical triangles are outside it.



 Each critical triangle 𝐷𝐷
 corresponds to a region spanned by triangles reachable from 𝐷𝐷

via discrete gradient paths

 Simplification process
 merges such regions



 Each critical triangle 𝐷𝐷
 corresponds to a region spanned by triangles reachable from 𝐷𝐷

via discrete gradient paths

 Simplification process
 merges such regions

 Lemma C: 
 In 𝑅𝑅2, at the end of simplification, the boundary of the 
𝑔𝑔 regions corresponding to the remaining critical triangles 
form a subset of output graph �𝐺𝐺.

 The associated edge-triangle discrete gradient vectors inside 
each region lead to a deformation retraction from 𝐺𝐺𝜔𝜔 to �𝐺𝐺.  



Remarks
 Noise model simple
 Thresholding-based approach may potentially work for this 

model 
 However, not for real data 

increasing threshold



Remarks
 Noise model simple
 Thresholding-based approach may potentially work for this 

model 
 However, not for real data 

decreasing thresholds



Concluding Remarks
 Explored the power of a discrete Morse+persistence based 

framework for graph reconstruction
 Application to both 2D (road network) and 3D (neuron 

reconstruction)

 Provided theoretical understanding and justification of its 
reconstruction ability

 Only a first step!
 More general noise models
 High dimensional points data input 




	Graph Reconstruction via Discrete Morse Theory
	Introduction
	Slide Number 3
	Some Related Work
	Some Related Work
	This Talk
	A Motivating Application
	Motivation cont
	A Motivating Application
	Morse-based Reconstruction
	Main Idea
	Morse Theory: Smooth Case
	1-stable Manifold
	Discrete Case
	Discrete Morse Theory
	Discrete Gradient Vector Field
	Discrete Gradient Vector Field
	Discrete Gradient Vector Field
	Simplification via Morse Cancellation
	Slide Number 20
	Sublevel-set Persistence – Simplified view
	Sublevel-set Persistence – Simplified view
	Sublevel-set Persistence – Simplified view
	Sublevel-set Persistence – Simplified view
	Sublevel-set Persistence – Simplified view
	Sublevel-set Persistence – Simplified view
	Sublevel-set Persistence – Simplified view
	Sublevel-set Persistence – Simplified view
	Discrete Case
	Main Algorithm
	Results – Road network reconstruction
	Effect of Simplification
	Thresholding? 
	Comparison
	Map Integration
	Map Augmentation
	Reconstruction from Satellite Images
	Reconstruction from Satellite Images
	Results – Neuron Reconstruction
	Results – Neuron reconstruction 
	Slide Number 41
	Next
	Reconstruction Editing 
	Main Algorithm
	Simplified Algorithms
	Simplified Algorithm – cont.
	Next
	Noise Model
	Noise Model
	Main Results
	Slide Number 51
	Slide Number 52
	Proof Ideas
	Proof Ideas
	Slide Number 55
	Slide Number 56
	Remarks
	Remarks
	Concluding Remarks
	Slide Number 60

