Homework 8

Due March 23rd in class or by 3:20 pm in MATH 602.

1. Evaluate

$$\iint_D \sin(x^2 + y^2) dx dy,$$

where D is the region given by $1 \le x^2 + y^2 \le 2$, $x \ge 0$, and $y \le 0$.

2. Evaluate

$$\iint_D e^{y-x} dx dy,$$

where D is the region inside the parallelogram with vertices (1, 1), (2, 3), (5, 4), and (4, 2).

Hint: It may be helpful to use a change of variables which converts the parallelogram into a square.

3. Evaluate

$$\iint_D (x^2 + xy + y^2) dx dy,$$

where D is the region inside the ellipse given by $x^2 + xy + y^2 = 3$.

Hint: It may be helpful to use a change of variables of the form x = au + bv and y = au - bv with constants a and b chosen so as to convert the ellipse to a circle.

- 4. Let $\alpha = (x^2 + y^2)dx + (x^2 y^2)dy$. Evaluate and simplify as much as possible the following: $d\alpha$, $*\alpha$, $\alpha \wedge *\alpha$.
- 5. Let f = f(x, y) be twice differentiable. Write out ddf, d * df and $df \wedge * df$ in terms of the partial derivatives of f, and simplify as much as possible.
- 6. Let D be the region inside the triangle with vertices (2, 2), (-2, 2), and (0, 10). Find the flux of the vector field

$$(e^{\cos(x^2)} + e^{\cos(y^2)}, x^2 + y^2)$$

outward through the boundary of D.