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Introduction Background

Kernel matrix compression

For a kernel function k(x , y) and two well separated sets X and Y , find
the low-rank approximation

KX ,Y

(m×n)
:= (k(xi , yj))xi∈X ,yj∈Y ≈ U

(m×r)
· V

(r×n)
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Where this problm often appears:

Numerical solution to PDE/IE

Cauchy/Toeplitz/Vandermonde systems

Kernel method in machine learning

N-body problem

. . .
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Introduction Review of compression methods

Different compression methods

Algebraic method

Singular value decomposition (SVD)
Rank-revealing factorizations: SRRQR [Gu, Eisenstat 96],
SRRLU [Miranian, Gu 03], ID [Cheng, et al. 05]. . .
Randomized compression [Frieze, et al. 04][Halko, et al. 11]

The algorithms deal with the matrix purely algebraically regardless of
how it is generated.

Analytical method

Multipole expansion [Greengard, Rokhlin 87]
Spherical harmonic expansion [Sun, Pitsianis 01]
Chebyshev interpolation [Fong, Darve 09]
Taylor expansion [Cai, Xia 16]
. . .

The resulting low-rank approximation usually lacks the structure
preserving feature.
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Introduction Proxy point method

Proxy point method

To compress the kernel matrix KX ,Y

SRRQR/ID

KX ,Y ≈ P

(
I
E

)
K X̃ ,Y := UK X̃ ,Y

U column basis, X̃ representative points.

Proxy point method

1 Pick proxy surface Γ and proxy points Z ⊂ Γ

2 Compress KX ,Z with SRRQR: KX ,Z ≈ UK X̃ ,Z

3 Then KX ,Y ≈ UK X̃ ,Y
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Introduction Proxy point method

Proxy point method

Appealing features:

Fast and accurate
|Z | can be much smaller than |Y | while still keep very small
approximation error.

Structure preserving
Benefits hierarchical matrix techniques.

Unanswered questions:

Why can we use the proxy surface and proxy points?
(In some cases, this can be answered by potential theory/Green’s
identity.)

Where to pick them? How many?
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Proxy point selection via contour integration Model problem

Model problem

The kernel function is

k(x , y) =
1

(x − y)d
, d ∈ Z+.

Two sets of points satisfy

X = {xj}mj=1 ⊂ D(0; γ1), Y = {yj}nj=1 ⊂ A(0; γ2, γ3).

X

Y
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Proxy point selection via contour integration Approximation error analysis

Introducing the proxy surface

For an x ∈ X and y ∈ Y , draw a closed curve Γ between them.

We can show with Cauchy integral theorem:

k(x , y) =
1

2πi

∫
Γ

k(x , z)

y − z
dz .
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Proxy point selection via contour integration Approximation error analysis

Introducing the proxy surface

With a quadrature rule {(zj , ωj)}Nj=1 on Γ:

k(x , y) ≈ kN(x , y) =
1

2πi

N∑
j=1

ωj
k(x , zj)

y − zj
=

N∑
j=1

k(x , zj)
ωj

2πi(y − zj)

:=
N∑
j=1

k(x , zj)wN(zj , y) = K x ,ZW Z ,y
N .
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Proxy point selection via contour integration Approximation error analysis

Approximation error analysis

Assume Γ = C(0; γ) is a circle (|x | < γ < |y |) and the N-point composite
trapezoidal rule is used, define

εN(x , y) = [kN(x , y)− k(x , y)] /k(x , y)
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Proxy point selection via contour integration Approximation error analysis

Approximation error analysis

Assume Γ = C(0; γ) is a circle (|x | < γ < |y |) and the N-point composite
trapezoidal rule is used, define

εN(x , y) = [kN(x , y)− k(x , y)] /k(x , y)

Theorem (approximation error bound)

There exists an N1 > 0 such that for any N > N1, the error is bounded by

|εN(x , y)| ≤ 1

|y/γ|N − 1
+

C

|γ/x |N − 1

where C is a constant dependent on N, d and |y/x |.

Note: N1 is independent of γ.
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Proxy point selection via contour integration Approximation error analysis

Approximation error analysis

Assume Γ = C(0; γ) is a circle (|x | < γ < |y |) and the N-point composite
trapezoidal rule is used, define

εN(x , y) = [kN(x , y)− k(x , y)] /k(x , y)

Theorem (optimal γ)

If the error bound is viewed as a real function in γ on the interval
(|x |, |y |), then there exists N2 > 0 such that if N > N2,

1 the function has a unique minimizer γ∗,

2 the minimum decays as O(|y/x |−N/2).

Note: γ∗ is dependent on N, d and |y/x |.
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Proxy point selection via contour integration Approximation error analysis

Approximation error analysis

Now for a block
KX ,Y ≈ KX ,Y

N = KX ,ZW Z ,Y
N ,

note that all entry-wise results still hold if |x | and |y | are replaced by γ1

and γ2.

Corollary (block error bound)

With γ ∈ (γ1, γ2), the F-norm relative approximation error is bounded by

‖KX ,Y
N − KX ,Y ‖F
‖KX ,Y ‖F

≤ 1

(γ2/γ)N − 1
+

C

(γ/γ1)N − 1

where C is as defined as before with |y/x | replaced by γ2/γ1.

Similarly there exists an optimal γ∗.
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Proxy point selection via contour integration Optimal proxy points

Case 1: d = 1

In this case, the kernel function is k(x , y) = 1/(x − y) which is associated
with Toeplitz and Cauchy-like matrices.

Proposition

When d = 1, for any N > 0 and γ ∈ (γ1, γ2), the approximation error is
bounded by

‖KX ,Y
N − KX ,Y ‖F
‖KX ,Y ‖F

≤ 1

(γ/γ1)N − 1
+

1

(γ2/γ)N − 1
.

If viewed as a function in γ, this upper bound has a unique minimizer
γ∗ =

√
γ1γ2 and the optimal upper bound is 2/

(
(γ2/γ1)N/2 − 1

)
.
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Proxy point selection via contour integration Optimal proxy points

Case 1: d = 1

A simple numerical test: m = 200, n = 300, γ1 = 0.5, γ2 = 2 and γ3 = 5,
pick X and Y uniformly from their corresponding regions.

-5 0 5

-5

0

5
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Proxy point selection via contour integration Optimal proxy points

Case 2: d > 1

Nothing explicit can be obtained in this case.

We can turn to our previous theorems for help:

γ∗ and the optimal bound are only dependent on N, d and γ2/γ1.
They are independent of m, n.

Pick X0 ⊂ D(0; γ1) and Y0 ⊂ A(0; γ2, γ3), then

E 0
N(γ) :=

‖KX0,Y0

N − KX0,Y0‖F
‖KX0,Y0‖F

and EN(γ) :=
‖KX ,Y

N − KX ,Y ‖F
‖KX ,Y ‖F

are expected to have similar behavior when γ varies in (γ1, γ2), thus
E 0
N(γ) can be used to approximate γ∗.

Computing E 0
N(γ) is cheap if |X0||Y0| is small.
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Proxy point selection via contour integration Optimal proxy points

Case 2: d > 1

Numerical test:

We set |X0| = |Y0| = l and let l = 1, 2, 3.
Always have γ1 ∈ X0 and γ2 ∈ Y0 (x = γ1 and y = γ2 correspond to
the worst case of approximation error).
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Figure: d = 2.
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Figure: d = 2, zoom in at critical point.
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Hybrid method Dissect the proxy point method

Dissect the proxy point method

What we’ve got so far is an analytical compression method (CI) for a
kernel matrix

KX ,Y ≈ KX ,Y
N = KX ,ZW Z ,Y

N .

Approximation error bounds.

Optimal choose for γ∗.

Proxy point method can be viewed as a hybrid method by combining CI
and ID:

KX ,Y ≈ KX ,Y
N = KX ,ZW Z ,Y

N (by CI on KX ,Y ),

≈ UK X̃ ,ZW Z ,Y
N (by ID on KX ,Z ),

= UK X̃ ,Y
N ≈ UK X̃ ,Y (by CI on K X̃ ,Y ).
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Hybrid method Approximation error analysis

Approximation error bound

Theorem (error bound)

The compression error τCI for the analytical step is the optimal error
bound, the relative tolerance (in F-norm) used in ID is τID and the
constant in SRRQR is f > 1 and the compression rank is r < N. Then a
rank-r approximation of the kernel matrix KX ,Y by the hybrid method
satisfies

‖KX ,Y − UK X̃ ,Y ‖F≤ (CCIτCI + CIDτID) ‖KX ,Y ‖F
where

CCI = 1 +
√

r + (m − r)rf 2

√
1− (m − r)(γ2 − γ1)2d

m(γ1 + γ3)2d
,

CID =
γ∗(γ1 + γ3)d

(γ2 − γ∗)(γ∗ − γ1)d
.
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Hybrid method Approximation error analysis

Remarks

The cost of the process is O(mNr).

The compression accuracy can be conveniently controlled by this
result.

In most cases, CCI ∼ O(
√
m) and CID ∼ O(1).

It explains some heuristics for proxy point method.

As long as the set Y is within the annulus region, the approximation
error bound is independent of |Y | or where they are.
N = |Z | can be very small regardless of |X | and |Y |. By our analysis, it
is only dependent on γ2/γ1 (separation of two sets).
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Hybrid method Conclusion

Conclusion

We rigorously justified the use of proxy points via contour integration,
presented the corresponding error analysis and discussed how to
achieve optimal performance.

Apply the results to proxy point method understood as a hybrid
method, obtained a clear connection between the approximation error
and how proxy points are picked.

This can be applied to hierarchical techniques for certain types of
matrices and potentially reduce the construction cost to be below
linear.

We are currently working on similar analysis for other kernels and
geometries.
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