Hierarchical adaptive low-rank format with applications to discretized PDEs

Stefano Massei

Joint work with D. Kressner (EPFL) and L. Robol (University of Pisa)

s.massei@tue.nl

Conference on Fast Direct Solvers, 23 October 2021

Sylvester equations coming from PDEs

We consider time-dependent PDEs of the form

$$\begin{cases} \frac{\partial u}{\partial t} = \mathcal{L}u + f(u, \nabla u) & t \in [0, T_{\text{max}}] \\ u(x, y, 0) = u_0(x, y) & (x, y) \in \Omega := [a, b] \times [c, d] , \\ \text{B.C.} & (x, y) \in \partial \Omega \text{ and } t > 0 \end{cases}$$

where $\mathcal{L} = \mathcal{L}_x + \mathcal{L}_y$ is elliptic with a Kronecker sum structured discretization [1,2] $L := I \otimes A + B \otimes I$, and f is nonlinear.

Applying the IMEX Euler approach, where $\mathcal L$ is treated implicitly, yields [3]

$$(I - \Delta t \cdot L)u_{t+1} = u_t + \Delta t(f(u_t, \nabla u_t) + B.C.),$$

i.e., an iterative scheme where at each step we need to solve a Sylvester equation.

Challenge: Can we go large-scale?

^[1] Townsend, Olver. The automatic solution of partial differential equations using a global spectral method. Journal of Computational Physics, 2015.

^[2] Palitta, Simoncini. Matrix-equation-based strategies for convection-diffusion equations. BIT, 2016.

^[3] D'Autilia, Sgura, Simoncini. Matrix-oriented discretization methods for reaction-diffusion PDEs: Comparisons and applications. Computers & Mathematics with Applications, 2020.

Main topic of the talk

We have an integration scheme that requires solving a sequence of Sylvester eqns:

$$AX_t + X_tB = C_t$$
.

Ideal situation: X_t is low-rank $\forall t \rightsquigarrow \text{Efficient storage and computation of } X_t$.

- When the solution $u(\cdot, \cdot, t)$ is smooth, X_t is (numerically) low-rank,
- ullet The presence of isolated singularities makes X_t only locally low-rank.

Main topic of the talk

We have an integration scheme that requires solving a sequence of Sylvester eqns:

$$AX_t + X_tB = C_t$$
.

Ideal situation: X_t is low-rank $\forall t \rightsquigarrow \text{Efficient storage and computation of } X_t$.

- When the solution $u(\cdot, \cdot, t)$ is smooth, X_t is (numerically) low-rank,
- The presence of isolated singularities makes X_t only locally low-rank.
- Singularities that move during the time evolution → time-dependent local structure.

Question: Can we fully exploit local and time-dependent structures in the time integration?

Burgers equation

As running example, consider the 2D Burgers equation:

$$\begin{cases} \frac{\partial u}{\partial t} = 10^{-3} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) - u \cdot \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \right) \\ u(x, y, t) = \frac{1}{1 + \exp(10^3 (x + y - t)/2)} \end{cases} \qquad t = 0 \text{ or } (x, y) \in \partial \Omega$$

Burgers equation

As running example, consider the 2D Burgers equation:

$$\begin{cases} \frac{\partial u}{\partial t} = 10^{-3} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) - u \cdot \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \right) \\ u(x, y, t) = \frac{1}{1 + \exp(10^3 (x + y - t)/2)} \end{cases} \qquad t = 0 \text{ or } (x, y) \in \partial \Omega$$

Blue blocks: Full rank submatrices, Grey blocks: Low-rank submatrices

The time marching scheme

```
1: procedure BURGERS_IMEX(n, \Delta t, T_{max})

2: A \leftarrow \frac{1}{2}I - \Delta tA_n

3: (X_0)_{ij} \leftarrow u(x_i, y_j, 0)

4: for t = 0, 1, \dots, T_{max} do

5: F \leftarrow X_t \circ [D_n X_t + X_t D_n^T]

6: C_t \leftarrow X_t + \Delta t \cdot F + \text{low-rank}

7: Solve AX_{t+1} + X_{t+1}A = C_t

8: end for

9: end procedure
```

 $A_n = n \times n$ discretized second derivative operator, $D_n = n \times n$ discretized first derivative operator.

The time marching scheme

```
1: procedure BURGERS_IMEX(n, \Delta t, T_{max})

2: A \leftarrow \frac{1}{2}I - \Delta tA_n

3: (X_0)_{ij} \leftarrow u(x_i, y_j, 0)

4: for t = 0, 1, \dots, T_{max} do

5: F \leftarrow X_t \circ [D_n X_t + X_t D_n^T]

6: C_t \leftarrow X_t + \Delta t \cdot F + \text{low-rank}

7: Solve AX_{t+1} + X_{t+1}A = C_t

8: end for

9: end procedure
```

To do:

- \bullet Construct a structured representation of X_0
- Construct a structured representation of the rhs C_t
- Efficiently solve the matrix equation

Given $M \in \mathbb{R}^{n \times n}, \epsilon > 0$, $\max {\mathrm{rank}} \in \mathbb{N}$ and let LRA($M, \epsilon, \max {\mathrm{rank}}$) be such that

Given $M \in \mathbb{R}^{n \times n}, \epsilon > 0$, $\max \operatorname{rank} \in \mathbb{N}$ and let LRA($M, \epsilon, \max \operatorname{rank}$) be such that

$$M =$$
 LRA

Given $M \in \mathbb{R}^{n \times n}, \epsilon > 0$, $\max \operatorname{rank} \in \mathbb{N}$ and let LRA($M, \epsilon, \max \operatorname{rank}$) be such that

Given $M \in \mathbb{R}^{n \times n}, \epsilon > 0$, $\max {\mathrm{rank}} \in \mathbb{N}$ and let LRA($M, \epsilon, \max {\mathrm{rank}}$) be such that

<i>M</i> =	LRA	LRA
IVI =	LRA	LRA

Given $M \in \mathbb{R}^{n \times n}, \epsilon > 0$, $\max {\mathrm{rank}} \in \mathbb{N}$ and let LRA($M, \epsilon, \max {\mathrm{rank}}$) be such that

<i>M</i> =	LRA X	LRA √
IVI =	LRA ✓	LRA ✓

Given $M \in \mathbb{R}^{n \times n}, \epsilon > 0$, $\max \operatorname{rank} \in \mathbb{N}$ and let LRA($M, \epsilon, \max \operatorname{rank}$) be such that

		LRA	LRA	11
M =		LRA	LRA	11
	_	1	2	9

Given $M \in \mathbb{R}^{n \times n}, \epsilon > 0$, $\max {\mathrm{rank}} \in \mathbb{N}$ and let LRA($M, \epsilon, \max {\mathrm{rank}}$) be such that

М =	✓ 	X ✓	11
M =	1	2	9

Given $M \in \mathbb{R}^{n \times n}, \epsilon > 0$, $\max \operatorname{rank} \in \mathbb{N}$ and let LRA($M, \epsilon, \max \operatorname{rank}$) be such that

		11		LRA	LRA	
<i>M</i> =	LRA			LRA	11	
		LRA	LRA	1	Λ	11
	_	LRA	LRA	1	U	
	_		1	2		9

Given $M \in \mathbb{R}^{n \times n}, \epsilon > 0$, $\max {\mathrm{rank}} \in \mathbb{N}$ and let LRA($M, \epsilon, \max {\mathrm{rank}}$) be such that

М =	11	11
ivi =	12	9

Given $M \in \mathbb{R}^{n \times n}, \epsilon > 0$, $\max {\mathrm{rank}} \in \mathbb{N}$ and let LRA($M, \epsilon, \max {\mathrm{rank}}$) be such that

<i>M</i> =	11 12 11	10 13 10	11
IVI =	1	2	9

Hierarchically Adaptive Low-Rank matrices (HALR)

We can associate with M the quad-tree cluster \mathcal{T} of the form:

<u>Def:</u> $M \in \mathbb{R}^{n \times n}$ is (\mathcal{T}, r) -HALR if its submatrices corresponding to the <u>low-rank</u> leaves of \mathcal{T} have rank $\leq r$.

Hierarchically Adaptive Low-Rank matrices (HALR)

We can associate with M the quad-tree cluster \mathcal{T} of the form:

<u>Def:</u> $M \in \mathbb{R}^{n \times n}$ is (\mathcal{T}, r) -HALR if its submatrices corresponding to the <u>low-rank</u> leaves of \mathcal{T} have rank $\leq r$.

What we can do with the HALR format:

- Matrix operations between HALR matrices with different partitionings
- Complexity is \log/\log^2 -proportional to the storage cost of the outcome
- Adjust/Refine the cluster (in the spirit of the construction algorithm)

Solving Sylvester equations

We have well established techniques for solving AX + XB = C when:

- C is dense \rightsquigarrow Bartels & Stewart [4] or Hessenberg-Schur [5] algorithms
- *C* is low-rank → Krylov projection methods [6,7] or ADI [8,9]

^[4] Bartels, Stewart. Algorithm 432: The solution of the matrix equation AX - XB = C, Commun. ACM, 1972.

^[5] Golub, Nash, Van Loan. Hessenberg-Schur method for the problem AX + XB = C, IEEE Trans. Automat. Control, 1979.

^[6] Hu, Reichel. Krylov-subspace methods for the Sylvester equation, Libear Algebra Appl., 1992.

^[7] Simoncini. A new iterative method for solving large-scale Lyapunov matrix equations, SISC, 2007.

^[8] Wachpress. Solution of Lyapunov equations by ADI iteration, Comput. Math. Appl., 1991.

^[9] Benner, Li, Truhar. On the ADI method for Sylvester equations, J. Comp. and App. Math., 2009.

Solving Sylvester equations

We have well established techniques for solving |AX + XB = C| when:

- C is dense → Bartels & Stewart [4] or Hessenberg-Schur [5] algorithms
- C is low-rank → Krylov projection methods [6,7] or ADI [8,9]

We want to develop an algorithm to deal with the case $C \in HALR$:

6 6 6 7	6 6 7 7	7
	7	1

28	28	27	28	27	28	28	28		28	28	28	27	27	27	28
28	28	28	28	27		27	29	28	28	28	28	27	28	29	28
28	28	29	27		28	28		27	29	28		28		28	28
28	28	28	28	27	28	28	29	28	29	29			28	28	
	28		29	28	29	28	28	28	28	28	28		29		28
28			28	27	27			28	29		27	28	28	28	28
	28	28	28	27	28		29	28	28	28	28	27	28	28	28
28	28	28	28	28		28	27	28	29	27	27	29	28	28	
28	28	28	27	28	28	28	29	29			28	28	28	28	28
28	29	28	28	28	27	29	29	29	28	29	29	28	27	29	28
27	28	29		29	29	27	29	29	28	27	28		28	28	28
28		28		29		28	27		28	28	28	29	29	28	28
	28	29	28	28	28		28	29	28		29	28		29	28
28	27	28	28	28	29		28				28	28	28	29	27
27	28		28	29		28	27	29	27		29	28	29	28	28
28	28	28	28	28		28	27		28		28	28	27	29	28

22	12	20
42 9 7 7 11 7 9 43		20
11 8 42 8 7 7 42 10	23	19
22	12	19

- [4] Bartels, Stewart. Algorithm 432: The solution of the matrix equation AX XB = C, Commun. ACM, 1972.
- [5] Golub, Nash, Van Loan. Hessenberg-Schur method for the problem AX + XB = C, IEEE Trans. Automat. Control, 1979.
- [6] Hu, Reichel. Krylov-subspace methods for the Sylvester equation, Libear Algebra Appl., 1992. [7] Simoncini. A new iterative method for solving large-scale Lyapunov matrix equations, SISC, 2007.
- [8] Wachpress. Solution of Lyapunov equations by ADI iteration, Comput. Math. Appl., 1991.
- [9] Benner, Li, Truhar. On the ADI method for Sylvester equations, J. Comp. and App. Math., 2009.

Hierarchical low-rank structure in A, B

The matrices A and B are usually banded or have low-rank off-diagonal blocks.

From now on we assume that A and B can be block partitioned as:

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \underbrace{\begin{bmatrix} A_{11} \\ A_{22} \end{bmatrix}}_{Block \ structured} + \underbrace{\begin{bmatrix} A_{12} \\ A_{21} \end{bmatrix}}_{low-rank}.$$

Hierarchical low-rank structure in A, B

The matrices A and B are usually banded or have low-rank off-diagonal blocks.

From now on we assume that A and B can be block partitioned as:

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \underbrace{\begin{bmatrix} A_{11} & \\ & A_{22} \end{bmatrix}}_{Block \ structured} + \underbrace{\begin{bmatrix} A_{12} \\ A_{21} \end{bmatrix}}_{low-rank}.$$

Simple idea: store low-rank blocks as outer products, and diagonal ones recursively (\mathcal{H} -matrices, HODLR) [10].

[10] Hackbusch. Hierarchical Matrices: Algorithms and Analysis, Springer Series in Computational Mathematics, 2015.

Sylvester equations with $A, B \in \text{HODLR}$ and $C \in \text{HALR}$

Idea: HODLR matrices can be block-diagonalized via low-rank modifications.

Splitting A and B into their block diagonal and antidiagonal parts, leads to:

Solve the equation

$$\begin{bmatrix} A_{11} & \\ & A_{22} \end{bmatrix} X_0 + X_0 \begin{bmatrix} B_{11} & \\ & B_{22} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix},$$

• Update X_0 by solving [11]

$$A \ \delta X + \delta X \ B = \underbrace{-\begin{bmatrix} A_{12} \\ A_{21} \end{bmatrix} X_0 - X_0 \begin{bmatrix} B_{12} \\ B_{21} \end{bmatrix}}_{\text{low-rank}}.$$

The first equation can be decomposed in 4 equations with HODLR coefficients of dimension $\frac{n}{2}$. This leads to a divide-and-conquer scheme.

[11] Kressner, Massei, Robol. Low-rank updates and a divide-and-conquer algorithm for linear matrix equations, SISC, 2019.

Sylvester equations with $A, B \in \text{HODLR}$ and $C \in \text{HALR}$ (cont'd)

- 1: procedure $D\&C_SYLV(A, B, C)$
- 2: **if** A, B are small matrices **then return** Bartels&Stewart(A, B, C)
- 3: end if
- 4: if $C = C_L C_R^*$ is low-rank then return low_rank_Sylv (A, B, C_L, C_R)
- 5: end if
- 6: Decompose

$$A = \begin{bmatrix} A_{11} & 0 \\ 0 & A_{22} \end{bmatrix} + \delta A, \quad B = \begin{bmatrix} B_{11} & 0 \\ 0 & B_{22} \end{bmatrix} + \delta B, \quad C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}$$

- 7: $X_{11} \leftarrow D\&C_Sylv(A_{11}, B_{11}, C_{11}), X_{12} \leftarrow D\&C_Sylv(A_{11}, B_{22}, C_{12})$
- 8: $X_{21} \leftarrow D\&C_-Sylv(A_{22}, B_{11}, C_{21}), \quad X_{22} \leftarrow D\&C_-Sylv(A_{22}, B_{22}, C_{22})$
- 9: $X_0 \leftarrow \begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix}$
- 10: Compute C_L and C_R such that $C_L C_R^* = -\delta A X_0 X_0 \delta B$
- 11: $\delta X \leftarrow \text{low_rank_Sylv}(A, B, C_L, C_R)$
- 12: **return** $X_0 + \delta X$
- 13: end procedure

Complexity and solution structure of D&C

$$AX + XB = C$$

Assumptions:

- C has low-rank blocks of rank $\leq r$; the storage cost of C is $\mathcal{O}(S)$
- A and B are HODLR matrices with HODLR rank $\leq k$
- Bartels&Stewart is applied only on matrices of size $\leq n_{min}$
- Solving equations with low-rank RHS costs $\mathcal{O}(k^2 n \log^2(n))$

Theorem

The solution X has the same HALR structure of C with ranks $\mathcal{O}(r + k \log(n))$ and the D&C method costs $\mathcal{O}(S \cdot k^2 \log^2(n))$.

Remark: The estimate $O(r + k \log(n))$ for the ranks in X is typically pessimistic.

Numerical results: Burgers equation

$$\begin{cases} \frac{\partial u}{\partial t} = 10^{-3} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) - u \cdot \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \right) \\ u(x, y, t) = \frac{1}{1 + \exp(10^3 (x + y - t)/2)} \end{cases} \qquad t = 0 \text{ or } (x, y) \in \partial \Omega$$

Numerical results: Burgers equation (cont'd)

Figure: 8000 Iteration timings of the Euler-IMEX scheme on Burgers equation for different spatial discretization steps and $\max = 50$.

Allen-Cahn equation

$$\begin{cases} \frac{\partial u}{\partial t} - 5 \cdot 10^{-5} \Delta u = u(u - \frac{1}{2})(1 - u) \\ u(x, y, 0) = \frac{1}{2} + \frac{1}{2} \text{randn} \\ \frac{\partial u}{\partial \vec{n}} = 0 \end{cases} (x, y) \in \partial \Omega$$

Allen-Cahn equation (cont'd)

Figure: 400 Iteration timings of the Euler-IMEX scheme on Allen-Cahn equation for different spatial discretization steps and ${\rm maxrank}=100$

Comparison with FFT-based solvers

HALR-based algorithms

	В	urgers	Allen-Cahn		
n	$T_{ m tot}$ (s)	Avg. T_{lyap} (s)	$T_{ m tot}$ (s)	Avg. T_{lyap} (s)	
4096	22334.0	1.32	505.2	0.81	
8192	57096.9	4.01	1147.4	1.82	
16384	119130.4	9.55	2336.8	3.32	

FFT-based algorithms

		Burgers	Allen-Cahn			
n	$T_{ m tot}$ (s)	Avg. T_{lyap} (s)	$T_{ m tot}$ (s)	Avg. T_{lyap} (s)		
4096	18094	2.26	174.97	0.44		
8192	70541	8.82	847.3	2.12		
16384	295507	36.94	2967	7.42		

Conclusions & outlook

Take away messages:

- Exploiting local and time-dependent structures can make the difference.
- Sylvester equations with HODLR coefficients A, B can be solved with a complexity \log^2 -proportional to the storage cost for the RHS.

What's next?

• Can we deal with 3D problems? Which tensorial format is the most suitable?

Full story:

 S.M., L. Robol, D. Kressner. Hierarchical adaptive low-rank format with applications to discretized PDEs, arXiv 2021.