Hierarchical adaptive low-rank format with applications to
discretized PDEs

Stefano Massei

Joint work with D. Kressner (EPFL) and L. Robol (University of Pisa)

EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY
s.massei@tue.nl

Conference on Fast Direct Solvers, 23 October 2021

1/18

Sylvester equations coming from PDEs

We consider time-dependent PDEs of the form

% = Lu—+ f(u,Vu) t € [0, Trmax)
u(x,y,0) = up(x,y) (x,y) € Q:=]a,b] x|[c,d],
B.C. (x,y)€e0Qand t >0

where £ = L, + L, is elliptic with a Kronecker sum structured discretization [1,2]
L:=I® A+ B®I, and f is nonlinear.

Applying the IMEX Euler approach, where L is treated implicitly, yields [3]
(l — At - L)Ut+]_ = uy + At(f(ut, Vut) + BC),

i.e., an iterative scheme where at each step we need to solve a Sylvester equation.

Challenge: Can we go large-scale?

[1] Townsend, Olver. The automatic solution of partial differential equat:ons usmg a global spectral method. Journal of Computational Physics, 2015.
[2] Palitta, Simoncini. Matrix-equation-based strategies for convection—diffi i BIT, 2016.

[3] D'Autilia, Sgura, Simoncini. Matrix-oriented discretization methods for reaction-diffusion PDEs: Comparisons and applications. Computers &
Mathematics with Applications, 2020.

Main topic of the talk

We have an integration scheme that requires solving a sequence of Sylvester eqns:
AXt + XtB = Ct'
Ideal situation: X; is low-rank Vt ~» Efficient storage and computation of X;.

@ When the solution u(-, -, t) is smooth, X; is (numerically) low-rank,
@ The presence of isolated singularities makes X; only locally low-rank.

@ Singularities that move during the time evolution ~~ time-dependent local
structure.

Main topic of the talk

We have an integration scheme that requires solving a sequence of Sylvester eqns:
AXt + XtB = Ct'
Ideal situation: X; is low-rank Vt ~» Efficient storage and computation of X;.

@ When the solution u(-, -, t) is smooth, X; is (numerically) low-rank,
@ The presence of isolated singularities makes X; only locally low-rank.

@ Singularities that move during the time evolution ~~ time-dependent local
structure.

Question: Can we fully exploit local and time-dependent structures in the time
integration?

Burgers equation

As running example, consider the 2D Burgers equation:

fie =0 (i) v (14)
u(x,y,t) = 1+exp(103(lx+y7t)/2) t=0or(x,y) € 00

4/18

Burgers equation

As running example, consider the 2D Burgers equation:

2 2

u(x,y,t) = 1+exp(103(1x+y7t)/2) t=0or(x,y) € 00

Blue blocks: Full rank submatrices, Grey blocks: Low-rank submatrices

4/18

The time marching scheme

1. procedure BURGERS_IMEX(n, At, Tmax)
22 A« LI-AtA,

3 (Xo),.j — u(x;, y;,0)

4 for t =0,1,..., Thax do

5: F«+ X o [D,,Xt + XtD,,T]

6: Cy <+ X + At - F+ low-rank

7 Solve AXt+1 + Xt+1A = Ct

8 end for

9: end procedure

A, = nx ndiscretized second derivative operator,

D, = n x ndiscretized first derivative operator.

5/

The time marching scheme

1. procedure BURGERS_IMEX(n, At, Thax)
22 A« LI-AtA,

3 (Xo);; < u(xi,y;,0)

4 for t =0,1,..., Thax do

5: F <+ X;o [DnXt + XtDﬂ

6: C: + Xy + At - F+ low-rank

7 Solve AXii1 + Xe1A =G

8 end for

9: end procedure

To do:
o Construct a structured representation of Xj
@ Construct a structured representation of the rhs C;

o Efficiently solve the matrix equation

5/

Finding a low-rank block representation

Given M € R"™" ¢ > 0, maxrank € N and let LRA(M, ¢, maxrank) be such that

M such that |[M — M|| < ¢, rank(M) < maxrank
LRA(M, e, maxrank) <

failure X

Example: LRA = maxrank iterations of the Adaptive Cross Approximation
algorithm.

6/

Finding a low-rank block representation

Given M € R"™" ¢ > 0, maxrank € N and let LRA(M, ¢, maxrank) be such that

M such that |[M — M|| < ¢, rank(M) < maxrank
LRA(M, e, maxrank) <

failure X

Example: LRA = maxrank iterations of the Adaptive Cross Approximation
algorithm.

M = LRA

6/

Finding a low-rank block representation

Given M € R"™" ¢ > 0, maxrank € N and let LRA(M, ¢, maxrank) be such that

M such that |[M — M|| < ¢, rank(M) < maxrank
LRA(M, e, maxrank) <

failure X

Example: LRA = maxrank iterations of the Adaptive Cross Approximation
algorithm.

M = LRA X

6/

Finding a low-rank block representation

Given M € R"™" ¢ > 0, maxrank € N and let LRA(M, ¢, maxrank) be such that

M such that |[M — M|| < ¢, rank(M) < maxrank
LRA(M, e, maxrank) <

failure X

Example: LRA = maxrank iterations of the Adaptive Cross Approximation
algorithm.

LRA LRA

LRA LRA

6/ 18

Finding a low-rank block representation

Given M € R"™" ¢ > 0, maxrank € N and let LRA(M, ¢, maxrank) be such that

M such that |[M — M|| < ¢, rank(M) < maxrank
LRA(M, e, maxrank) <

failure X

Example: LRA = maxrank iterations of the Adaptive Cross Approximation
algorithm.

LRA X LRA /

LRA / LRA v/

6/

Finding a low-rank block representation

Given M € R"™" ¢ > 0, maxrank € N and let LRA(M, ¢, maxrank) be such that

M such that |[M — M|| < ¢, rank(M) < maxrank
LRA(M, e, maxrank) <

failure X

Example: LRA = maxrank iterations of the Adaptive Cross Approximation
algorithm.

LRA |LRA

11
LRA | LRA

12 9

6/

Finding a low-rank block representation

Given M € R"™" ¢ > 0, maxrank € N and let LRA(M, ¢, maxrank) be such that

M such that |[M — M|| < ¢, rank(M) < maxrank
LRA(M, e, maxrank) <

failure X

Example: LRA = maxrank iterations of the Adaptive Cross Approximation
algorithm.

VoI X

11

X | Vv

12 9

6/ 18

Finding a low-rank block representation

Given M € R"™" ¢ > 0, maxrank € N and let LRA(M, ¢, maxrank) be such that

M such that |[M — M|| < ¢, rank(M) < maxrank
LRA(M, e, maxrank) <

failure X

Example: LRA = maxrank iterations of the Adaptive Cross Approximation
algorithm.

LRA |LRA

11

LRA [LRA

10

11

LRA|LRA

LRA|LRA

12 9

6/

Finding a low-rank block representation

Given M € R"™" ¢ > 0, maxrank € N and let LRA(M, ¢, maxrank) be such that

M such that |[M — M|| < ¢, rank(M) < maxrank
LRA(M, e, maxrank) <

failure X

Example: LRA = maxrank iterations of the Adaptive Cross Approximation
algorithm.

X
11 riv
, 11
VX
riv 10
M =
12 9

6/ 18

Finding a low-rank block representation

Given M € R"™" ¢ > 0, maxrank € N and let LRA(M, ¢, maxrank) be such that

M such that |[M — M|| < ¢, rank(M) < maxrank
LRA(M, e, maxrank) <

failure X

Example: LRA = maxrank iterations of the Adaptive Cross Approximation
algorithm.

10

13 1

6/

Hierarchically Adaptive Low-Rank matrices (HALR)

We can associate with M the quad-tree cluster 7 of the form:

[1, nIx[1, n]
[300 31 [31x03. 7] I3 0, 31 ERSNERS
/W tov-cark
[211, 31 [31x1%. 31 1%, 3100 31 2300331

[, 2Ix0%, 3nl 1, 2, 1x1 %, $nl1%, "M 3nll%, FIx03n, 31 0%, SnIx01, "]II[%,%HJ]XII" 2] [3n, 2M1 ZT03n, BIxI%,
low-rank dense se low-rank low-rank dense low-rank

s

Def: M € R" " is (T, r)-HALR if its submatrices corresponding to the low-rank
leaves of T have rank < r.

Hierarchically Adaptive Low-Rank matrices (HALR)

We can associate with M the quad-tree cluster 7 of the form:

[1, nIx[1, n]
[300 31 [31x03. 7] I3 0, 31 ERSNERS
/W tov-cark
[211, 31 [31x1%. 31 1%, 3100 31 2300331

I, 2Ix0%, 3nl [, 2, Ix0%, 30102, 3104, 3nl1%, 2IxI3n, 3113, 3nlxl1, 2112, $nIx(2, 21 [3n, g, 2] [3n, 2IX[3, 21
low-rank dense nse low-rank low*rank e low-rank

e

Def: M € R" " is (T, r)-HALR if its submatrices corresponding to the low-rank
leaves of T have rank < r.

What we can do with the HALR format:
@ Matrix operations between HALR matrices with different partitionings
o Complexity is Iog/logQ—proportionaI to the storage cost of the outcome
o Adjust/Refine the cluster (in the spirit of the construction algorithm)

7/18

Solving Sylvester equations

We have well established techniques for solving | AX + XB = C | when:

o C is dense ~~ Bartels & Stewart [4] or Hessenberg-Schur [5] algorithms
@ C is low-rank ~» Krylov projection methods [6,7] or ADI [8,9]

[4] Bartels, Stewart. Algorithm 432: The solution of the matrix equation AX — XB = C, Commun. ACM, 1972.

[5] Golub, Nash, Van Loan. Hessenberg—Schur method for the problem AX + XB = C, |EEE Trans. Automat. Control, 1979.
[6] Hu, Reichel. Krylov-subspace methods for the Sylvester equation, Libear Algebra Appl., 1992.

[7] Simoncini. A new iterative method for solving large-scale Lyapunov matrix equations, SISC, 2007.

[8] Wachpress. Solution of Lyapunov equations by ADI iteration, Comput. Math. Appl., 1991.

[9] Benner, Li, Truhar. On the ADI method for Sylvester equations, J. Comp. and App. Math., 2009.

Solving Sylvester equations

We have well established techniques for solving | AX + XB = C | when:

o C is dense ~~ Bartels & Stewart [4] or Hessenberg-Schur [5] algorithms

@ C is low-rank ~» Krylov projection methods [6,7] or ADI [8,9]

We want to develop an algorithm to deal with the case C € HALR:

[4] Bartels, Stewart. Algorithm 432: The solution of the matrix equation AX — XB = C, Commun. ACM, 1972.

[5] Golub, Nash, Van Loan. Hessenberg—Schur method for the problem AX + XB = C, |EEE Trans. Automat. Control, 1979.
[6] Hu, Reichel. Krylov-subspace methods for the Sylvester equation, Libear Algebra Appl., 1992.

[7] Simoncini. A new iterative method for solving large-scale Lyapunov matrix equations, SISC, 2007.

[8] Wachpress. Solution of Lyapunov equations by ADI iteration, Comput. Math. Appl., 1991.

[9] Benner, Li, Truhar. On the ADI method for Sylvester equations, J. Comp. and App. Math., 2009.

Hierarchical low-rank structure in A, B

The matrices A and B are usually banded or have low-rank off-diagonal blocks.

From now on we assume that A and B can be block partitioned as:

A A A A1z
A= = .
[AZI A22] [Azz] * [A21 }

Block structured low-rank

9/

Hierarchical low-rank structure in A, B

The matrices A and B are usually banded or have low-rank off-diagonal blocks.

From now on we assume that A and B can be block partitioned as:

A A A A1z
A= = .
[AZI A22] [Azz] * [A21 }

Block structured low-rank

Simple idea: store low-rank blocks as outer products, and diagonal ones
recursively (H-matrices, HODLR) [10].

1= ==
=] P

1=

=

= U: n=n=ﬂ=

1= 1=

=

[10] Hackbusch. Hierarchical Matrices: Algorithms and Analysis, Springer Series in Computational Mathematics, 2015.

Sylvester equations with A, B € HODLR and C € HALR

Idea: HODLR matrices can be block-diagonalized via low-rank modifications.

Splitting A and B into their block diagonal and antidiagonal parts, leads to:
@ Solve the equation
{Au

Bi1 1G1 Go

Xo + X =
Azz] ot 0[522} [C21 sz]’

o Update Xy by solving [11]

A12 812
AGX +6X B=— Xo — X .

low-rank

The first equation can be decomposed in 4 equations with HODLR coefficients of

dimension 7. This leads to a divide-and-conquer scheme.

[11] Kressner, Massei, Robol. Low-rank updates and a divide-and-conquer algorithm for linear matrix equations, SISC, 2019.

10 / 18

Sylvester equations with A, B € HODLR and C € HALR (cont’d)

1. procedure D&C_SyLv(A, B, C)

2: if A, B are small matrices then return Bartels&Stewart(A, B, C)
3: end if

4: if C = C.C is low-rank then return low_rank_Sylv(A, B, C;, Cg)
5: end if

6 Decompose

A1 O B O Cn Go
A= 0A, B= 6B, C=
|: 0 A22:| + ’ [0 B 2:| + [CZI C22:|
T X11 «— D&C-Sy'V(All, Bll7 Cll)y X12 < D&C-Sy|V(A11, 522, C12)
8: X21 — D&C-Sy'V(Azz, Bll7 C21), X22 — D&C.Sy'V(Azz7 822, C22)
X1 X2
9: Xo +
0 [le Xzz]
10: Compute C; and Cg such that C,C; = —0AXy — Xp0B
11 0X + low_rank_Sylv(A, B, C;, Cg)
12: return Xy + 60X
13: end procedure

11/ 18

Complexity and solution structure of D&C

AX+XB=C

Assumptions:

@ C has low-rank blocks of rank < r; the storage cost of C is O(S)
@ A and B are HODLR matrices with HODLR rank < k
o Bartels&Stewart is applied only on matrices of size < np,

e Solving equations with low-rank RHS costs O(k2nlog?(n))

The solution X has the same HALR structure of C with ranks O(r + k log(n))
and the D&C method costs O(S - k? log?(n)).

Remark: The estimate O(r + klog(n)) for the ranks in X is typically pessimistic.

Numerical results: Burgers equation

13/ 18

Numerical results: Burgers equation (cont’d)

x low-rank
o HALR

—
[}
=

J
fe=}
=)

—

— o

o 1
2 e

"
[}
=)

1071 E 1 1 1 1 1 1 1

n = 16384

Il Il Il Il Il Il Il
0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000
Iterations

Time per iteration (s)

=
=)

10°

107!

Figure: 8000 Iteration timings of the Euler-IMEX scheme on Burgers equation for
different spatial discretization steps and maxrank = 50.

14 / 18

Allen-Cahn equation

%4 _5.107°Au=u(u—3)(1-u)

u(x,y,0) = 3 + irandn
ou _
on

(x,y) € 02

t=20.3 t=0.5 t =18.0

t =35.0

2

Allen-Cahn equation (cont’d)

x low-rank
o HALR
o Dense
T
2] J
0% n = 4096
= .
= 100 - M 7
— B
3 } T T } } } }
£ 102 J
g 10°R n = 8192
'E b o
g 10°F . = i
[} | | | | | | |
E T T T T T T T
& 2P |
&0 n=16384
PSR e
100 | pa— e .
| |

| | | | |
50 100 150 200 250 300 350 400
Iterations

Figure: 400 Iteration timings of the Euler-IMEX scheme on Allen-Cahn equation for
different spatial discretization steps and maxrank = 100

16 / 18

Comparison with FFT-based solvers

HALR-based algorithms

Burgers Allen-Cahn
n Tiot (s) Avg. Tiyap () | Tiot (s) Avg. Tiyap ()
4096 22334.0 1.32 505.2 0.81
8192 57096.9 4.01 1147.4 1.82
16384 | 119130.4 9.55 2336.8 3.32
FFT-based algorithms
Burgers Allen-Cahn
n Tiot (S) AVg. Tiyap (S) | Tiot () Avg. Tiyap (S)
4096 | 18094 2.26 174.97 0.44
8192 70541 8.82 847.3 2.12
16384 | 295507 36.94 2967 7.42

17 /18

Conclusions & outlook

Take away messages:

@ Exploiting local and time-dependent structures can make the difference.

@ Sylvester equations with HODLR coefficients A, B can be solved with a
complexity log?-proportional to the storage cost for the RHS.

What's next?

@ Can we deal with 3D problems? Which tensorial format is the most suitable?

Full story:

@ S.M., L. Robol, D. Kressner. Hierarchical adaptive low-rank format with
applications to discretized PDEs, arXiv 2021.

18 / 18

